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ABSTRACT

In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic

balance. Single-point turbulence closures, in generM, cannot attain a geostrophic balance. This

article addresses and resolves the possibility of constitutive relation procedures for single-point sec-

ond order closures for a specific class of rotating or stratified flows. Physical situations in which

the geostrophic balance is attained are described. Closely related issues of frame-indifference, hor-

izontai nondivergence, Taylor-Proudman theorem and two-dimensionaiity are, in the context of

both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex

stretching Mong the axis of rotation, that turbulence is frame-indifferent. A derivation and dis-

cussion of a geostrophic constraint which the prognostic equations for second-order statistics must

satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which

include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive

relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-

pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with

the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants

determined by numerical optimization but are functions of the state of the turbulence as param-

eterized by the Reynolds stresses and the turbulent heat fiuxes. The functions are valid for all

states of the turbulence attaining their limiting values only when a limit state is achieved. These

issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers,

in which there is a transition from a three-dimensionai shear driven turbulence to a geostrophic or

horizontal turbulence.
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NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.



1. Introduction

Many geophysical and environmental flows exhibit regions of the flow which are in an approximate

geostrophic balance - a balance of Coriolis and pressure forces, 2¢ikpUp_p _-- --10,/. At present

no turbulence closure for the statistics of the fluctuating field is consistent with the geostrophic

bMance. Single-point turbulence models are, in general, subject to ad hoc corrections when applied

to rotating flows. This approach does not make use of the mathematicM requirements that the

dependent variables and their evolution equations satisfy. The difficulty with the equations, as

currently modeled, can be seen when the equations are transformed to a rotating coordinate system

- a geostrophic balance is not attainable in the small Rossby number limit. Closely related to this

is the requirement, associated with the Taylor-Proudman theorem, that as the flow reaches a

two-dimensional state the turbulence be frame-indifferent. Frame-indifference is required by the

Navier-Stokes equations, Hide (1977), Speziale (1981, 1985), Ristorcelli, Lumley and Abid (1995).

The problem with the current models for the second-order equations results from the inability of

the rapid-pressure strain covariance model to reflect the physics associated with the reduction of

vortex stretching. These issues are related to the fact that if there is no vortex stretching along

the axis of rotation then rotation does not play a dynamical role in the flow's evolution. This is a

form of realizability: a turbulence that is horizontally divergence free is frame-indifferent and the

exact and, therefore, the modeled equations must be frame-invariant. The terms frame-indifferent

and frame-invariant refer to the fact that the rate of rotation of the frame of reference does not

appear in the prognostic equations.

The title to this article is after Lumley's (1970) article with a similar title. Lumley's (1970) article

discussed the possibility of the use of the invariant basis methods of rational mechanics to create

constitutive relations for < uiuj >. Here the fact that, in more complex flows with rotation

or buoyancy, one needs to carry evolution equations for < u_uj >, < uiO >, is acknowledged.

Nonetheless these are slowly evolving flows and are therefore suitable candidates for the invariant

basis methods. Lumley's (1970) article also discusses the principle of material-frame-indifference; a

modelling principle used with success in continuum mechanics. Lumley (1970) provides a very clear

physical picture for why such a principle is not appropriate for positing turbulence constitutive

relations. This article is in concordance with that viewpoint: the principle of material-frame-

indifference is not a valid theoretical principle for a general three-dimensional turbulent field. It

is, however, an applicable principle in the limit of a horizontally nondivergent field for which the

equations are frame-invariant. Research in rotating turbulence typically addresses issues relating

to the reduction of the cascade rate. Here the focus will be on the Reynolds stresses and the form

their modeled evolution equation takes when the stretching of vorticity along the axis of rotation



vanishes.This sort of flowstructuretakesplacein stronglyvortical flowsof aerodynamicinterest

andalsoin manygeophysicalsituations.

This articlediscussesin depththeseand attendantanalyticalissues.A substantialportion of the

time is spentdescribingflow situationsin whichrotation or stratificationplaysa role beforein-

dicatinghowtheseissuesmanifestthemselvesin the instantaneousquantitiesandtheir statistics.

Theintentionis to illustratethephysicaleffectsof rotationandstratificationandto showhowsuch

phenomenaleadto flowswhoseevolutionequationsareframe-invariant.The point madeis that,

for flowsaffectedby rotation or stratification,a two-dimensionalor horizontalturbulenceis an

equilibriumsituationandthe constitutiverelationproceduresareviable.Mathematicaldetailsre-

gardingTaylor-Proudman,frame-indifferenceandhorizontaldivergencelessnessarethen discussed.
Theseissuesarediscussedin the contextof threeflows,rotating,baroclinicandstablystratified. In

theseflowstheprimary componentof thefluctuatingvorticity is alignedwith the axisof rotation.
It is thenshownhow theseissuesaredealtwith in the contextof second-ordermomentclosures;

a constitutiverelationfor thepressure-straincovarianceensuringthat the properframe-invariance

of themodeledsecond-ordermomentsequationsis produced.

The potential importanceof frame-indifferencefor turbulencemodellingwasput forward, in the

contextof a rapidly rotating mechanicalturbulence,by Speziale(1981,1985).In this article this

ideahasbeensubstantiallygeneralizedto a wider classof flows,both rotating and nonrotating.

The proofs of frame-invariance used here are also different than that of Speziale (1981, 1985). The

present proofs deal directly with the vorticity and as such allow a very clear physical intepretation

in terms of vortex stretching. This allows a comprehensive assessment of the class of flows for which

such a principle might be useful. This article also indicates how these frame-indifference issues are

used to produce a properly frame invariant set of modeled equations.

In short we (1) describe the physical effects of rotation and stratification in a number of stationary

flows, (2) show the mathematical consequences of rapid rotation or stable stratification, (3) indi-

cate how the geostrophic balance manifests itself in the second-moment equations and (4) discuss

the possibility of and posit a turbulence constitutive relationship consistent with the geostrophic

balance. It is made clear that such a single-point constitutive procedure is limited to classes of

turbulence for which the anisotropy of the Reynolds stresses and heat fluxes is a suitable measure

of the anisotropy of the turbulence.

2. Frame invariance in rotating and stratified flows

Several examples of flows in which stratification and rotation lead to frame-indifferent flows are



described.Thiswill motivateandclarify subsequentmoremathematicalconsiderations.Toprovide

physicalinsight into theseeffectsthreesimplecases- the rotating tank, therotating differentially
heatedannulus,andthe stratifiedgrid turbulence- aretreatedin detail. In all threeof thesecase

thereareregionsin whicha horizontallydivergence-freestationaryturbulenceexists.

A fewpointson nomenclatureareappropriate:A geostrophicturbulenceis onewhosehorizontal

divergence is small because its Rossby number is small. This latter qualification distinguishes it from

a general flow with vanishing horizontal divergence for arbitrary Rossby number. Reynolds (1989),

has coined the word componential to better distinguish the several different classes of flows for which

the phrase two-dimensional is casually used. Componential refers to the number of components

the velocity vector has; dimensional refers to the number of independent variables of which it is a

function. Thus a 2D-2C field is u_(x, y), i = 1, 2 while a 2D-3C is one in which u_(x, y), i = 1, 2, 3.

See also Kassinos and Reynolds (1994). Lesieur (1991) has also found the need to differentiate

these different types of fields. For Lesieur (1991) a two-dimensional turbulence, as seen in the

Taylor-Proudman situations has u_(x, y), i = 1,2, 3 while a turbulence with u_(x, y, z), i = 1,2, as

arises in stably stratified situations, is called a horizontal turbulence. Both of these fields in the

limit of small Rossby or Froude number are frame-indifferent.

The rotating tank: Figure 1 shows a schematic of the three different regimes seen in rotating grid

generated turbulence studied by Hopfinger, Browand and Gagne (1982). It is an inhomogeneous

turbulence with no mean flow; an isotropic turbulence is generated at an oscillating grid placed at

the bottom of the rotating tank. Greenspan (1968), has tentatively summarized the major effects of

rotation as being the tendency of the flow to become two-dimensionalized in planes perpendicular

to the axis of rotation, the occurrence of inertial wave for frequencies, w < 2_/and the rapid spin up

of fluid elements or creation of intense vortices. Hopfinger, Browand and Gagne's (1982) rotating

tank, the first example below, is very simple and elegant experiment exhibiting all three of these

aspects. This flow is a graphic demonstration of the effects of rotation as a function of the local

turbulent Rossby number, Rot = _/2_, which changes in the inhomogeneous (axial) direction.

The axial coordinate is a proxy for the Rossby number which decreases with from distance from

the grid as, near the grid, _ _ z -1 and _ _ z and Rot _ z -2.

The grid is oscillated at a frequency much larger than f > 2_. Near the grid one obtains an

isotropic three-dimensional turbulence unaffected by rotation as seen in inertial systems. This is

a region of large Rot; as long as the turbulence frequency _/l > 2_ the usual three-dimensional

turbulence exists.

Further from the oscillating grid, Rot < 0.4, there is a transitional zone in which the largest scales



of the motion aretwo-dimensionaloverwhicharesuperposedsmallerscaleageostrophicmotions.

In this regionthe energydecayis substantiallydiminished;this is dueto a reductionof vortex
stretchingandthusthereductionof thecascadefromtheenergycontainingtwo-dimensionalscales.

Thesmallerageostrophicmotionscontinueto loseenergythroughthe cascadeanddissipation.The

fluctuatingfield is composedof inertial wavesandturbulence.

Furtherpast the transitional zonethere is a third regionin which the turbulence,now almost

purely twocomponentialis independentof the axialcoordinate,two-dimensional- "2D-2C". The

transitionto this flow takesplaceabruptly at Rot = 0.2. The flow is composed of thin coherent

columnar vortices whose lifespans are very large compared to the rotation period, (2f/) -1 and the

eddy turnover time, l/_. The flow is consistent with the Taylor-Proudman theorem:

_ju_,j --, 0. (1)

In this region of the flow both energy and enstrophy conserved quantities and as a consequence

the transfer of energy from a larger to a smaller scale of the flow is accompanied by transfer from

smaller to larger wavenumber. The "inverse cascade" imposes a powerful constraint on nonlinear

interactions between different scales of the motion. It is accompanied, as is well known, by vortex

merging phenomenon. The vorticity of the vortices can be two orders of magnitude larger than the

background rotation.

The differentially heated rotating annulus: Both buoyancy and rotation are important in

this flow situation, Figure 2. This experimental set up simulates the transport of heat in the

atmosphere (modulo the beta effect) from the warm equatorial regions to the poles: the heated

outer cylinder representing the equatorial regions, the cool inner cylinder the polar regions, the

azimuthal direction represents the zonal (east-west) flows. A horizontal temperature gradient is

impressed across a rotating annulus. Under the action of strictly gravitation torques the fluid

elements undergo an overturning motion and the differential heating produces a stably stratified

meridional circulation. The mean vorticity is azimuthal. At zero and low rotation rates the flow

is an "ageostrophic" thermal turbulence (provided the Grashof number is high enough). As the

annulus is rotated more rapidly several things occur: Coriolis forces inhibit the meridional flow,

vertical component of the velocity is reduced, and an azimuthal component to the mean velocity

is induced. The Coriolis force that inhibits the overturning motion in the meridional planes and

promotes a different kind of convection called sloping convection, Hide and Mason (1975): fluid

elements have trajectories with very small angles to the horizontal. This is a manifestation of

baroclinic waves. The waves transfer heat and momentum perpendicular to the shear.

Some of the features of this sequence of transitions can be understood from the thermal wind



balance.The momentumequations,in this limit, reflectthegeostrophicandhydrostaticbalances,

2_3U2_ P,1, 2Y/3U1 _ p,2, gl3T _- -P,3. (2)

Here the coordinates [Xl, x2, x3] are the cartesian equivalents to the cylindrical system [r,/_, z]. The

comma indicates differentiation with respect to the subscripted variable. The basic state represents

a balance between buoyancy, Coriolis and pressure forces in the interior of the fluid. The equations

for the azimuthal and vertical components of the vorticity become

2_"_3U2,3 " g/3T,2, 2_3U3,3 _- 0. (3)

If the basic state of the temperature field is assumed to be of the form T(Xl, x3) = x3 - xltan(O) the

balance requires an azimuthal shear, U2 = 2_-_ z. This is the basic state that is used in the Eady

model for the analysis of the baroclinic instability, Hide and Mason (1976). It is valid when the

Ekman and Rossby numbers are small. The baroclinic instability is the instability of the vertically

sheared zonal current, U2 = 2g-_ z.

The different flow states as a function of two external flow parameters reflecting the size of the

impressed horizontal temperature gradient and the speed of the rotation is of interest. For a given

Prandtl number the flow can be characterized by two nondimensional numbers: the thermal Rossby

number, ]_Oth = gt3ATH/_2(Ro-Ri) 2, and a Taylor number, Ta = 4_2(Ro- R/)2//] 2 where Ro and

R¢ are the outer and inner radii of the annulus. This sequence of transitions, associated with the

geostrophic instability, are nicely illustrated in the heated rotating annulus flows of Buzyna, Pfeffer

and King (1984), Fein and Pfeffer (1976) and Hide and Mason (1975). The temperature field and

fluctuations were measured in these experiments. As the reason for undertaking these experiments

was primarily an investigation of the transition to a geostrophic turbulence the stabilization of

the ageostrophic or thermal turbulence by rotation was, from the viewpoint of the turbulence

statistics, not fully explored. Furthermore the thermal turbulence (when it existed), most notably

in the mercury experiments of Fein and Pfeffer (1976), has a low Reynolds number; Re = 2500

based on annulus width.

1). Axisymmetric: At large values of the Rossby number, Roth >> 1 (low rotation rates) the flow

in the annulus is essentially buoyancy driven with a unicellular meridional circulation. The flow

field is axisymmetric and the mean vorticity is azimuthal. As the rotation increases Coriolis forces

reduce the azimuthal component of the mean vorticity, the vertical component of the velocity is

reduced, and the mean velocity becomes zonal. This is accompanied by a reduction in heat transfer

across the annulus. In addition, the stable stratification (associated with the meridional circulation

driven by the horizontal heat flow) decreases, the temperature fluctuations decrease and conduction

becomes a much more important component of the heat transfer.
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2). Non axisymmetric - steady baroclinic waves: As Roth --_ 1 the flow loses its axisymmetry:

the zonal (azimuthal) velocity becomes wavelike and the primary vorticity component is vertical.

There is a transition from a thermal turbulence to a turbulence field over which are superposed

baroclinic waves. As the rotation increases the thermal turbulence is suppressed. There are large

azimuthal waves, wavenumbers 1 and 2, travelling with a small uniform drift with respect to the

rotation speed of the annulus. The waves have length scales on the order of the Rossby radius

of deformation - A ,_ 2(g_ATH)I/2/_. The power spectrum of the temperature has a few peaks

corresponding to two characteristic wave frequencies and their harmonics. Because of the waves the

heat transfer is augmented: a fluid particle gains and loses heat as it is moved back and forth by

the passage of a baroclinic wave. This form of thermal convection is known as sloping convection

where radial heat transfer is not by the overturning of an eddy in the meridional plane but by the

passage through the fluid of an almost horizontal baroclinic wave. This is called the regular wave

regime; the flow is, disregarding drift, periodic. Additional increases in rotation create additional

waves with ever higher azimuthal wavenumber.

The baroclinic wave regime and ensuing instability are a result of a modification of the gravitational

body forces by system rotation; what is a stably stratified temperature field in the non-rotating

coordinate system becomes, at high rotation rates, an unstably stratified field due to a change in

the direction in which a displaced particle oscillates. This is schematically illustrated in Figure

3. The isopycnals (isotherms) in the interior are almost horizontal, while stably stratified in the

vertical.

3). Non axisymmetric - unsteady baroclinic waves: Further increases in the rotation rate produce,

near Roth _--0.1, the structural vacillation regime: another frequency appears and the waves undergo

fluctuations in amplitude and wavenumber. With further increases in rotation rate additional

frequencies appear in the temperature spectrum and background noise begins to increase. The

wavelengths of the azimuthal waves continue to get smaller.

4). Non axisymmetric - geostrophic turbulence: When Roth < 0.1 the flow is spatially (in the

horizontal) and temporally uncorrelated; the flow is perfectly correlated in the vertical. The tem-

perature spectrum is broad and relatively featureless. The heat flux across the annulus undergoes

a sudden decrease as the flow becomes a geostropkic turbulence; essentially composed of random

unsteady baroclinic waves. With increasing rotation more baroclinic waves of higher azimuthal

wavenumber appear; this is a necessary prerequisite for the transition to a baroclinic turbulence

which requires an inverse cascade and cannot occur until there are enough small scales for a spectral

flux to larger scales.



Stably stratified flows: The analogybetweenrotating and stratifiedfluids is known,Veronis

(1970)andHopflnger(1987);the stablestratification,asquantifiedby the meandensitygradient,

playsa roleanalogousto the rotation. A scalinganalysisof the continuityandvorticity equations

canbeusedto scalethe relativemagnitudesof the verticalandhorizontalcomponentsof velocity.

Linearizing around the basic stratified state the continuity equation becomes,

_Z U3_.dpoujp,j +u3 = 0 ::v P '_ UH dz (4)

The balance in the vorticity equation produces

po(uiwi,j -- ¢ajui,j ) -= _imqgqP,m (5)
p "_ po g£ •

Combining the two estimates produces

U3 ,'_ po___H dpol_ 1 _ 1UH dz R---_" (6)

Ri is the Richardson number. As the stable stratification increases Ri increases and u3 --* 0 and

the turbulence becomes a horizontal turbulence. For arbitrary rotation the axial stretching of the

vertical vorticity goes to zero: 2_3u3,3-+ 0 aS U3 --+ 0. These scalings are consistent with the

observation of the turbulence collapse for grid turbulence under stable stratification, Browand and

Hopflnger (1982) and Browand, Guyomar and Yoon (1987), observed to take place when

_t g dpo ,

< 0.3, N2 = --Po "l (7)

This is analogous to the collapse of the two-dimensional flow seen far from the grid in the rotating

tank flows, Hopfinger, Browand and Gage (1982). The Brunt-V_s£1£ frequency now plays the

role the Coriolos frequency, 2_; N 2 and 2_ both represent upper bounds on the frequency range

of gravity and inertial waves. They approximate the frequency with which a particle displaced

from its equilibrium position oscillates. A similar collapse is seen in the wake of a sphere in a

stably stratified environment: a fully three-dimensional turbulent wake collapses to create a two-

dimensional wake, in the plane of the stratification, similar to the two-dimensional von Karman

vortex street behind a cylinder. Some of these wake issues are summarized in Thorpe (1987) and

Hopfinger (1987). Lin and Pao (1979) and Xu, Fernando and Boyer (1995) provide more detail.

Applications: The above flows are simple pedagogical examples useful for illustrating the physics

of the effects of rotation and buoyancy which must be incorporated into single-point turbulence

closures for such flows if they are to be predictive tools. These effects play a role in more complex

flOWS.



There are the planetary boundary layers in which many of these issues are relevant. At the large

scales of the motion the turbulence is two-dimensional; at the smaller scales the turbulence is three-

dimensional, Wyngaard (1992). From a mesoscale point of view both of these regimes are important.

For the interfaces between the atmosphere and the earth or the ocean there is a boundary layer

typically a kilometer or two in height (depending on wind conditions) in which the flow makes

a transition from a three-dimensional shear driven boundary layer turbulence with its attendant

three-dimensional cascade mechanism to a quasi-geostrophic turbulence whose largest scales do not

undergo the vortex stretching and rotation seen in three-dimensional turbulence. In the neutrally

stable boundary layer rotation affects the flow within the mixed layer, Wyngaard (1992). For the

stable mixed layer the size of the layer is established at the inversion cap at which the vertical

component of the turbulence is extinguished by the stratification.

A similar transition takes place at the ocean-air interface and at the ocean bottom. These bound-

ary layer while only 0.1-.5 kilometers in size represent a transition zone from three-dimensional

shear or buoyancy driven turbulence to a geostrophic flow in the interior of the oceans. Computa-

tions that span these regions for either quantitative environmental calculations or to create simple

parameterizations of these regions to use as boundary conditions for global circulation models will

require a set of equations consistent with a geostrophic balance. This flow is complicated by the fact

that the mean flow is much lower than a typical fluctuating velocity. The usual mean production

mechanisms are no longer the most important and more care must be taken with the modelling of

pressure and transport terms in the equations.

There are several flows of technological interest in which materiaLframe-indifference will potentially

play a roll. Figure 4 is a sketch of a Czochralski crystal growth apparatus. The melt flow is a

thermally driven flow driven by the temperature difference between the crucible and the crystal.

It is modified by centrifugal forces associated with the rotation of the crystal and Coriolis forces

associated with the rotation of the crucible. Some of the features seen in the baroclinic instability

in the melt are seen in this flow. A summary of issues associated with this flow is given in Rlstorcelli

and Lumley (1992).

In vortex flows of aeronautical interest the persistence of trailing vortexes is associated with the

strong rotational forces that reduce turbulence mixing. The alignment of the vortical fluctuations

with the mean vorticity will also produce a frame-indifferent flow field. This situation is further

exacerbated by the local effects of stable atmospheric stratification that substantially reduce their

decay. A strong mean strain, as might be seen when turbulence goes through a rapid axisymmetric

contraction, will align the fluctuating vorticity with the primary strain axis. Such a 2C turbulence



associatedwith the 1Cvorticity, Figure5, is alsoframe-indifferent.

3. Taylor-Proudman, frame-indifference and horizontal-divergencelessness

First it is shown that rapid rotation leads to flows whose prognostic equations are frame invariant.

This is a result of the Taylor-Proudman theorem which indicates that scales of the motion with time

scales slow compared to the rotational period become horizontally divergence free. It is then shown

that, for arbitrary rotation rate and thus a much wider class of flows, any horizontally divergence

free flow is frame-indifferent.

The Navier-Stokes equations, in the Bousssinesq approximation, are

i_i + Wul,d + 2eikpf_kup = --P,i + gfliO + vui,jd • (8)

The pressure has been normalized by the constant density. The curl of the Navier-Stokes equations

produces the vorticity equation

&i + udwi,d = (wj + 2f_j)ui,d + eimqgflqO,._ + vwi,di • (9)

where oak = ekqiui,q. For ease of discussion it shall be assumed that the rotation and gravity are

along the "3" axis. For rapidly rotating flows the Taylor-Proudman theorem, for those portions of

the flow whose frequency is slow with respect to the rotation of the frame, is obtained from the

vorticity equation,

ft3ui,3 --* 0 (10)

as ftd --* oo. This is a statement about a flow occurring in the presence of a background vorticity

of 2ft. The motions of a fluid in geostrophic balance is the same in planes perpendicular to the

axis of rotation. In such a flow the vorticity generation mechanisms of stretching along the axis of

rotation _'_3"%3 and rotating into the axis of rotation _-_3"1//a3, (Ol : 1,2) are reduced. This manifests

= 1in the reduction of the turbulence cascade rate. Here sld -_[ui,i +u i,i] and wij = l[ul,j -ui,i].

It has been shown that as f/d --* oc that _2dui,i --+ 0 and the evolution equations are frame invariant.

Clearly if ftdui,i --* 0 for arbitrary rotation rate the flow is also frame indifferent. Situations in which

f_dui,d = 0 occur in flows with strong stable stratification (described above), low aspect ratio or

MHD. For baroclinic flows the thermal wind balance of the vorticity equation is

2f'ljui,d = - si_qgflqO,_. (11)

The individual components of the vorticity equation require, for i = 1,2, 2_dul,j = -ei,_qgflqO,,_ ,

and for i = 3, 2_ju3,j = 0. Ill such flows the velocity field, to lowest order in Rot, is described by



a streamfunction

up = epqk_k¢,q + w_3 ¢,p = eqp_lkuq + _lp_lq¢,q (12)

where ¢ = ¢ (x, y, z). The carat indicates a unit vector. This is easily seen by contracting

on the the geostrophic balance in the following manner: _jq_lq [ 2_ikp_lkUp -_ --P,i + gt_i_ ].

Carrying through the mathematics one obtains ¢ = -p/2_. The streamfunction and pressure

field are proportional and the isobars and streamlines are aligned. Thus u N -p,y and v _ p,_

and to lowest order u,_-t-v,y = 0. The hydrostatic balance, P,3---- g]_ leads to 8 = _-_9-_¢,3. The

vertical velocity is then obtained diagnostically from D_ = 0. The vorticity is related to the

streamfunction, ¢ = ¢(x, y, z), by

w_ = _z¢,il-_i¢,qq. (13)

The vertical component of the vorticity is given by the horizontal Laplacian of the streamfunction

w3 = -V_/¢ which evolves according to

&3 + ujw3,j = (wj ÷ 2_j)u3,j + _w3,jj. (14)

This is the prognostic equation for the streamfunction and it is closed with respect to the stream-

function. Inspection shows that it is frame-invariant if there is no axial stretching of vorticity,

_jU3, j ---- 0: this is a statement that the flow is horizontally divergence free: -w,z = u,_ ÷v,v = 0.

As a consequence any horizontally divergence free velocity field is also frame-indifferent. Such a

flow field, with the representation up = epqk_k¢,q ÷ w5i3, includes a horizontal turbulence whose

velocity components lie in planes perpendicular to the axis of rotation as well as three-dimensional

velocity fields that are independent of the coordinate along the axis of rotation. It is well known

that the vertical variability in these flows will in fact induce an axial stretching and that evolution

of such a system is described by the conservation of potential vorticity. Our interest lies with

constructing a turbulence closure consistent with physical principles: if the axial stretching (equiv-

alently if the horizontal divergence vanishes) then the evolution equations for the turbulence must

be frame invariant. Some special cases are now indicated.

Case 1: _ljuj = 0,¢ = ¢ (x,y) : This is the case that Reynolds (1989) calls 2C-2D - the velocity

vector has only two components and is dependent on two coordinates. In geophysical fluid dynamics,

for example, the shallow water limit of the atmosphere or ocean, such a field is sometimes called

two-dimensional. The field is horizontally divergence free. The Taylor-Proudman theorem applied

in a bounded domain, with no flux boundary conditions, is included in this category.

Case 2: _jui,j = 0, ¢ = ¢ (x, y) : Such a field is horizontally divergence free. This might be called

a 3C-2D meaning the flow is independent of the coordinate along the axis of rotation ¢ = ¢ (x, y)

10



and the velocityvectorhasthreecomponents,up = evqkglk_b, q + _"_pUi{_i3. The Taylor-Proudman

theorem in an unbounded domain is included in this category. Note that in the very common

configuration, a bounded domain with no flux boundary conditions (_lpUp = 0) that the _2jui,j = 0

case includes Case 1.

Case 3: _juj = 0, ¢ = ¢ (x, y, z) : Using Reynolds (1989) nomenclature this case would also be

called 2C-3D, as w = 0. The streamfunction is a function of all three-coordinate directions and the

field and u,x +v,y = O.

Case 4: _ju3,j = 0, ¢ = ¢ (x, y, z) : The streamfunction is a function of all three-coordinate direc-

tions though now w = w (x, y). This is the most general of all four flow fields and includes cases

1, 2 and 3 as special cases and is a statement of the horizontal divergence free condition, w,3 = O.

A dependence on all three coordinate directions occurs in the case of the thermal wind balance: a

horizontal temperature gradient in a rotating fluid induces vertical shear of the horizontal velocity

field as can be seen from the vorticity equation, 2_3Uk,3 -------g]_O,q gkq3. The pressure field which is

related to the streamfunction, determines the density field through the hydrostatic balance of the

vertical momentum equations, ¢,3 -1= "_-P,3 = -_-_0. In the absence of such body forces the flow is

not dependent on the vertical coordinate and the thermal wind balance produces _pui,p = 0 which

may have two or three nonzero velocity components depending on initial conditions or boundary

conditions.

4. Stratification, low Froude number and frame-indifference

The previous section addressed rapidly rotating flows, with and without buoyancy, in which there

was an approximate geostrophic balance. It was also shown that, for arbitrary rotation rate

(ageostrophic turbulence), a horizontally nondivergent field is also frame-indifferent. A turbu-

lence in a stably stratified environment is an example of an ageostrophic turbulence that is frame-

indifferent in the limit of strong stratification. The case of a stably stratified horizontal turbulence

is now treated. In the strongly stably stratified case while the vertical velocity associated with

turbulence does go to zero one might still expect large horizontal divergences associated with fluid

elements oscillating about the equilibrium position.

A turbulent Froude number, Fr_ = _/Nl where N 2 = gilT,3 is used to describe the properties of

stably stratified turbulence. It can be understood as a ratio of length scales. The turbulence length

scale, _ and the buoyancy length scale _b = (z/N. The buoyancy length scale _b can be interpreted

as the largest size eddy capable of executing an overturning motion against the stratification. A

three componential turbulence will in general collapse to a horizontal turbulence for small enough
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Frt. Essentially vertical motions must perform work against the stable stratification to maintain

themselves, horizontal motions do not. As the relative stratification increases energy is fed into

the large scale horizontal motions and the flow collapses into striated layers sometimes described

as being comprised of thin horizontal pancake vortices decorrelated in the vertical direction. The

layers are independent of each other and lead to a vertical structure with different layers evolving

independently (unlike the baroclinic case). The energy containing scales of the turbulence has

primarily a vertical vorticity with small vertical velocities. Superposed on the turbulence will be an

internal wave field with vertical velocity but no vertical vorticity. The occurrence of these vertical

velocities is what distinguishes this case from the rapidly rotating flow. The wave and turbulence

are, in the low Froude number limit, decoupled and the evolution equations for the turbulence are

frame invariant.

The equations are written in horizontal and vertical velocity components: u_ = v_ + w5_3 where

v_ = [vl,v2, 0]. Continuity is therefore ui,_ = vj, i +w,3 = 0. The momentum and energy equations,

modulo diffusivity and viscosity, are

i)i + ujvi,j -_ 2gikpVp_p -_ Pd -- 0

+ ujw,j + p,i -- g_6 = 0
dT

+ uj6,j + = O.

(15)

(16)

(17)

A scale analysis similar to Lilley's (1983), in which the distinction between the wave fields and

the turbulence is highlighted, is useful. The equations are rescaled by characteristic turbulent

velocities in horizontal, uc, and vertical directions, we, with length scale _. The fast time scale: the

nondimensional equations are rescaled on the wave time scale, N,

2f_ ^
+ +-ffe k vp p = -Err [ujv ,j ] (18)

iv + P,i - g/_O = -Frt [ujw,j ] (19)

dT Frt [uitg,j ] (20)
Oi + W dz -

vj,j +w,3 = o (21)

where Rot = uc/(2f/g) and Frt = uc/(N_.). For the wave regime wc ,,_ uc; note that the horizontal

divergence for this field is not small. In the absence of rotation (strictly for convenience of presen-

tation) the three and two-dimensional Poisson equations for the pressure are, in the limit of small

Frt, V2p = _,3 and V_/p = zb,3; the energy equation is used to produce a prognostic equation for

the potential,

V2p,tt A- V2Hp = O, (22)
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where¢ = -p. The slow time scale: the equations are rescaled on the advective time scale, ucl_,

_)i _- VjVi,j -_- Ro_12gikpVp_p -_ P,i = -Fr_ [WVi,3 ] (23)

p,{ - grip = -Fr_ [@ + vdw,i + Fr_ [ww,3 ]] (24)

dT

_ + vje,j + wE = -Fr_ [wje,3] (25)
vj,j = -Fr 2 [w,3]. (26)

For the turbulence wc _ Fr2uc. The horizontal divergence for the turbulence field, unlike the wave

field, vanishes as Fr_ and the vorticity is vertical. Such a field is fully described by a streamfunction,

¢ = ¢(x, y, z) whose evolution is described by the vertical vorticity equations, w3 = -V_¢

v_¢ + vjv_¢,j = _v_¢,jj. (27)

as can be verified by taking the curl. As the horizontal divergence vanishes, as Fr_ --+ 0 the

equations are frame-invariant and the evolution is frame-indifferent. The ¢ solution generates the

velocities and the pressure. The temperature is found from the pressure through the hydrostatic

balance; the energy equation is then a diagnostic relationship for w. It should be noted that the

streamfunction has vertical structure and that the turbulence is frame-indifferent.

In the low Frt the waves and the stratified turbulence are describable by a Helmholtz decomposition

for the velocity field is possible:

% = _k_k¢,_ + ¢,_ - ¢,3_3 + w_3 (2S)

The horizontal divergence of the field is associated with the wave field: as Up,p = 0 thus -V_/¢ =

w,3. Such a velocity field decomposition seems to have first been used, in this context, by Riley,

Metcalf and Weissman (1981).

5. Frame-invariance of the second-moment equations

A similar investigation of the frame invariance of the second-moment equations is now described. It

will be shown (1) how the geostrophic balance manifests itself in the second moment equations, and

(2) what constraints any representation for the rapid-pressure covariances are required to satisfy. It

should be clear that a geostrophic turbulence is one whose horizontal divergence is small because its

Rossby number is small reflecting a pressure-Coriolis balance 2_ikpUp_p _- -p,i. However any flow

with vanishing horizontal divergence (and arbitrary Rossby number) also satisfies the geostrophic

constraint. Both have second-moment evolution equations that are frame-invariant.

The instantaneous fields are partitioned into mean and fluctuating field. The usual Reynolds

decomposition, u* = Ui + ui and T* = T + 8, is used. The second-order moment equations for an

13



incompressibleturbulence,in the Boussinesqapproximation,in a rotating coordinatesystem,are

D

D---t< uiuj > + 2 (_kRo-a[eikp < upuj > +ejkp < UpUi >] =

-[< ujup > v_,p+ < u_up > vj,_]

-[< p,j ui > + < p,i uj >] + Re -1 < uiuj >wp -

< Oui >/3j+ < Ouj > _31

- < uiuj Up >,p

2Re -1 < Ui,p Uj,p > (29)

D
D---_< 0ui > +2epikf_k < 0up > Ro -1 = -[< Ouj > U_,j+< u_uj > T j]+ < 00 > Z_

-- < Ouluj > j -- < p,iO >

+Re-l(1 + pr-1)(< Oui >,jj -2 < O,jui,j >). (30)

The velocity has been normalized by a characteristic turbulence velocity uc and the Rossby number

is Ro = uc/_2Rc where Rc is a length scale and _ the rotation rate of the frame of reference. The

gravity and rotation vectors are aligned with the 3 axis. The concern is with the pressure-strain

and pressure-temperature gradient correlations, -[< p,j ui > + < p,iuj >] = -[< pui >,j + <

puj >,i I-k- < psij > and < piO >=< pO >,i- < pOi >. An equation for the pressure fluctuations

comes from the divergence of the Navier-Stokes equations for the ttuctuating velocity

ui,t --kujUi,j +Ujui,j +ujui,j - < uiuj >,j +2eikp_kupRo -1 = -P,i +Ofli + Re-lui,jj (31)

which produces a Poisson equation for fluctuating pressure.

recognizes three terms

The standard linear decomposition

-P,_i = 2[Ui,p +epik_kRo-1]up,i (32)

-P,}i = u_,j uj,i -- < ui,j uj,i > (33)

where p", pS pb are respectively the rapid-pressure, the slow or return to isotropy pressure, and the

buoyancy-pressure. The effects of rotation are felt through the rapid-pressure, p_. Solution of the

Poisson equation for the rapid-pressure is by application of Green's theorem

¢ dx t
¢(_) = - (4_)-_ f ¢(x ),,, _x-x,_-

It is the moments of the solution that are required to close the second-order equations. For a homo-

geneous mean field a straightforward interchange of the order integration and averaging produces:

(35)

(36)

<P ij >:

_o -2[uq,_ +E_khkRO--_]Xp_< P ,i >=
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wheresij = ½[ul,j +uj,i] and

Zpiq --_

Xipqj =

dx s

(471-) -lf <7 0(X)_tp(X') >,i,q, lx---Z-_l

dx _
(47r) -1 f < ui(X)Up(X') >,j,q, Ix---x=_l"

(37)

(3s)

By continuity sjj = 0; this < psij > interchanges energy between the different components of the

Reynolds stress but does not contribute to the kinetic energy of the turbulence. In drawing the

mean velocity gradient outside the integral the assumption of quasi-homogeneity has been made:

the length scale of the inhomogeneity of the mean field is large compared to the integral scale of the

turbulence. The primary contribution to the integral will then come from regions within an integral

length scale of the local position over which the velocity gradient is approximately constant.

Consider the portion of the rapid-pressure correlation associated with the rotation

^ 1 f 9qkfikePqkflk R°-l XipqJ - 47fRo < >,j,q,
dx I

X -- xtl "
(39)

A horizontally divergence free velocity field has, to within an arbitrary additive scalar function, the

representation

for ¢ = 9 (x, y, z). The flow along the rotation axis is specified by an additive scalar function.

In the stably stratified case in which there is a horizontal divergence associated with potential

field the analysis is the same: the potential makes no contribution to the integral. A proof of the

frame-invariance of the second-moment equations when the velocity field has this representation

is straightforward. Insert the expression for the velocity field into the integral and contract to

produce, in the integrand, the Laplacian of the streamfunction, ¢,p = eqpkf_kuq which reduces the

volume integral of a two-point statistic to a one-point statistic which is identical with the Coriolis

term,

f dx' (41)1 .  kfik < >,j,q, --Ix-x'l -- < >=   jkhk < > .

This analysis and a similar one for the heat flux equations produce the geostrophic constraints

epqnflnXipqj = Qjn_n < UiUq > (42)

%q_Xpqi = eqi,_f/_ < uqO > . (43)

These are constraints reflecting the geostrophic balance of the second-moments of the fluctuating

field. The indicated contraction of any model for the rapid-pressure strain covariance, Zipqj and
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Xpqi is required to satisfy. From another point of view: when the fluctuating flow is generated

by a streamfunction the rapid-pressure covariance representation equals the Coriolis terms and the

exact equations (and therefore their models) are frame-indifferent. This is not an invocation of the

principle of material-frame-indifference, Lumley (1970), used in rational mechanics to construct a

constitutive relation. It is a statement, derivable from first principles, that any constitutive relation

for the rapid-pressure strain must satisfy if the evolution equations are frame-indifferent in the limit

of a two-dimensional or a two-componential turbulence.

6. Additional mathematical properties of the rapid-pressure covariance

There are additional mathematical properties that the rapid-pressure covariance integrals must

satisfy. The fourth- and third-order tensors have the following symmetries: Xijkl = Xijlk, Xijkt =

Xj_kt, Xijk = X_kj. For an arbitrary three-dimensional turbulence the tensor polynomialsmust

Mso satisfy the constraints of normalization and continuity:

Xijkk = < uiuj >, Xikk = < ui8 >,

Xijjk = 0, Xiji = O. (44)

Note that a contraction of the integral of a two-point statistic is a local one-point statistic. For a

purely isotropic turbulence the tensors have the values

4
[$_j_kl -- l(_ik(_jl + _iZ_jk)] (45)Xijkl -- 15

k

Xijk = 0 (46)

The tensor< uiuj > has positiveeigenvalues.This reflectsthe factthat the energy ofthe turbu-

lenceis always positive and that the magnitude of the correlation coefficients between the various

components of the tensors be bounded by one. These facts lead to "realizability" constraints that

specify the behavior of the correlations as an eigenvalue of the Reynolds stress approaches zero.

The relevant portion of the Reynolds stress transport equations, in principal axes, requires that

D/Dt < u_u_ > ,_ [Up,i +£ipk_kRO-1]Xiapa "+ 0 a.s < U_U_ >--+ 0 (47)

in order to satisfy realizability. The rate of change, due to the rapid-pressure correlation, of the

eigenvalue < uau_ > is required to vanish as the limit state is approached. This insures that

the rapid-pressure correlation model does not cause the solution to go into the unrealizable region

in which < uaua > is negative. This is extremely dangerous from a computational viewpoint,

Ristorcelli et al. (1995). The realizability limit is rephrased in terms of the determinant of the

Reynolds stress: F = (R3j - 3RjjR2j + 2R3j)/6 where Rij =< uiuj > / < upup > which can

be written in terms of the invariants of the anisotropy tensor as F = 1 + 9II + 27III where
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1 . = _½ b2 1 .... b3II = --_bijbi3 < >_ III= -_b_pbp_b3_ : 1 < >. The determinant F varies between zero

and one; F = 1 corresponds to an isotropic turbulence and F = 0 corresponds to the realizable

limit in which an eigenvalue is zero.

The quantities Xp_q and X_pqj cannot be modeled independently; and the heat fluxes and the

l_eynolds stresses are linked through Cauchy-Schwarz type inequalities, Dij = < /90 >< u_uj >

- < tgui >< tguj > >_ O. Dij has positive semi-definite eigenvahes. Similar reasoning produces the

"joint-realizability" constraint

D/Dr D_ ~ [U_,_+_kakRo-1][< ee > z_p_- < eu_ > x_] -_ 0 as D_ -_ 0 (4S)

which couples the rapid-pressure correlations appearing in the heat flux and the t_eynolds stress

equations. A similar determinant function Fd is defined with the normalized D_j, for which 0 <

Fd < 1. Joint-realizability reflects the requirement that the magnitude of the correlation coefficients

be bounded by one: the l_eynolds stress and the heat-flux take on values "jointly" such that the time

rate of change of D_ goes to zero as D_ goes to zero. The mathematical properties, continuity,

symmetry, normalization, isotropy, geostrophy, and realizability of the unknown rapid-pressure

covariances have now been given. The possibility of a constitutive relation is now addressed.

7. A constitutive relation for the rapid-pressure covariance

A closure for unknown rapid-strain covariances,

dx, (49)x_ = 1_/< e(x)_p(_') >,_'a'Ix--=_l

dx, (50)z_j = ±4. f < _(x)=_(x') >,j,a, ]x-x,I

is now sought..The two-point velocity and velocity-temperature covariances satisfy complex evo-

lution equations and the quantity desired is the integral of their double divergence. There is little

that can be done at this point; not much of any simplicity will result from investigations of the

two-point evolution equations. A hypothesis which cannot be true with full generality but which

may be rigorously correct in special circumstances is adopted.

The point of view of rational mechanics, Lumley (1970), is adopted: if a constitutive relation is to

be determined phenomenologically it must satisfy certain general properties that the original un-

known quantity satisfies. These properties, tensor invariance, symmetry, continuity, normalization,

geostrophy, isotropy and realizability, must therefore be satisfied by any constitutive relation for

the rapid-pressure covariances. In this way a general structure for the phenomenological relation is

obtained. One might then expect the closure to be able to predict the pressure-strain for a class of

flows from another of the same class. The subject of this article is closure in terms of other single-

point quantities carried in such a closure. The properties of continuity, geostrophy, and isotropy
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whichrelatethe unknownintegrals,Xpiq, Xipqj, to single-point quantities suggest such a closure,

may be tenable.

A closure of the form Xpiq = Xpiq(< uiuj >, < uiO >) and Xipqj -_- Xipqj(< uiuj >) is sought.

Parameterizing the integrals of a two-point covariance in terms of the Reynolds stress and the

heat flux is a substantial simplification requiring consideration. It is likely only to be adequate for

certain classes of turbulent flows. Lumley (1970) has discussed the conditions under which such a

constitutive relation is possible. Lumley's (1970) conclusions are that such a procedure is suitable

for slowly evolving flows,

--<1, or ---<1 (51)
S e IPk

suitably removed from the initial conditions

Pk (52)
At -_->I

so that nonlinear effects and production mechanisms that generate turbulence have been in oper-

ation long enough to decorrelate the present state from the initial state. Here At represents time

past initiation of the flow, the overdot represents a Lagrangian derivative, S represents some norm

of the strain Sij, Pk is the production rate of k and g is an integral scale of the turbulence. The

overdot represents the Lagrangian derivative. For a turbulence with short term memory and limited

awareness Lumley (1967) has carried out an expansion procedure indicating how truncation errors

might scale.

There is another point of view that is useful to consider. A brief summary is given - these points

have been covered clearly in Lumley (1970, 1978), and Lumley and Khajeh-Nouri (1974). Consider

the high Reynolds number homogeneous form of the Reynolds equations

- [< uju > < u up > vj,p] -

-2[uq, +epqkak_ao- ][X pqj + Xjpq ] (53)

as an equation for Xijkl; Xijkl can then be written as functionals of the Reynolds stresses, the dissi-

pation, the heat fluxes throughout the field and over previous time; Xijkl = X/jkl{VU, < uu >, e},

Xijk = X/jk{VU,< uu >,< u0 >,e0}. Expanding the functional in a Taylor series about the

present state and keeping only the lowest order terms is suitable for a slowly evolving turbulence.

Retaining higher order terms of the functional Taylor series expansion will involve spatial and

temporal derivatives of bij and substantially complicate the problem. It is expected that, for a

slowly evolving turbulence, retention of only the first order term captures enough of the physics
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to allowpredictionssuitablefor calculationsprovidedthat anymodelfor Xijkz and Xpkj have the

proper mathematical properties. This is a brief recapitulation of the arguments that lead to the

possibility of closures using constitutive relations. It is clear that the theoretical development un-

derlying this procedure is not applicable to rapidly evolving flows or to flows whose anisotropy is

not parameterizable by < uiuj > and < uiO >.

The most general forms of a parameterizations for the fourth-order tensor appearing in the Reynolds

stresses will be

X_jkz/2k = Al_ij_kz + A2[_ik_fl + _il_jk]

+ A3_jbkl + A4b_j_kz + As[bik@ + bil_jk + 5ikbjl + _ilbjk]

+ A_,_jb_l+ ATb_/kl+ As[b_k_j,+ b_j_ + _b_, + _b_]
+ A9b_jbkz + Alo[bikbj_ + bilbjk]

+ A_lb_b_,+ Al_b_jb_+ Al_[b_bj_+ b_bj_+ b_b_,+ b_,b_]
2 2 2 2 2 2

+ A14bijbk_ + A_s[bi_bjl + bi_bjk ].

The six Reynolds stresses have been replaced with the six quantities bij and k = 1 < UpUp > where

blj =< uiuj > /2k - ½1_ijis the anisotropy tensor. Following Pope's (1983) linearity principle only

terms linear in the heat-flux are kept in the tensor polynomial for the representation rapid-presure

in the heat flux equations:

Xp_j = DI < 0% > _kj + D2[< Ouk > _j+ < Ouj > _pk]

+ D3 < Oup > bkj + D4[< Ou_ > b_j+ < Ouj > b_]
2 2

+ Ds < OUp > b_j + De[< Ouk > bpj+ < Ouj > bpk ]

+ [DTbq_kj + Ds(bqk_vj + bqj_vk)] < Ouq >

+ [D9bqpbkj + D_o(bqkbpj + bqjbpk)] < Ouq >
2+ [Dl1_,_ + D_:(_b_s+ _j_,_)]< 0_ >

2(_ 2+ [D_3bqp kj + D_4(bqkSpj + b_jSpk)] < 0% >
2 .+ [D_ + D_(b_,, + _,_)1 < Ou_>

2 2 2 2 2 2
+ bqjb_:)] < >D_s(bqkb_j 0%-I- [D_7bqpbkj +

The Ai and Di are scalar functions of the invariants of bij and < Oui >. They are functions of the

state of the flow as characterized by the invariants: they are not constants, Rivlin (1955), Spencer

(1971). As complex as these expressions appear one should keep in mind that they result from

nothing more complex, conceptually, than the Buckingham PI theorem; tensor quantities require

invariance under a larger group of transformations.

This methodology can be contrasted to the usual procedure. The usual modeling procedure is to

choose these functions to be constants and then use the empirical curve fitting procedure with

modeled partial differential equations to match predictions for the Reynolds stresses in a number of
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flows.Sometimestheseconstitutiverelationsfor the rapid-pressurestrain alsorequireexpressions

linearin the b_j; such a requirement does not satisfy many of the required mathematical properties.

A few caveats appear necessary. These sorts of constitutive arguments, that allow Xpiq = Xviq(<

uiuj >, < uiO >) and Xipqj = Xivqj(< u_uj >), are not applicable to rapidly distorted flows;

these are essentially linear problems in which the dependence on the initial conditions has not

been decorrelated by the nonlinear processes of turbulence. The assumption of a slowly evolving

turbulence underlying the constitutive relation procedure is violated. The shortcomings of this sort

of methodology for rapidly distorted problems are known, Reynolds (1994), and the shortcomings of

the linear rapid distortion methods for fully nonlinear turbulence problem are also well known. Our

interest here is in geophysical flows; the atmosphere and the ocean have been integrating for several

million years, Margolin (1996), and for these geophysical flows, as is well known for fully developed

turbulence in engineering flows, terms quadratic in the fluctuations are far more important than

those linear, Smith (1996).

Inserting the tensor polynomial expressions into the continuity, normalization, geostrophy and real-

izability constraints produces a set of algebraic equations. The solution for the algebraic equations

yields the foliowing expressions for the scalar functions:

A 1 _-

A2 _-

A3 --

A4 --

As =

A6 --

AT =

As =

A9 --

Alo =

All =

A12 --

A13 -_

where A14 -- 0 and A15 -- 0

(111II + 73)/27Iid- F(420II-t- 239)/135Iid
--(69II + 32)/27Iid + F(420II + 257)/270IId
(311+ 4)/3/Id - F(11/10)/(1 + 3II)
(151I + 11)/31Id- F(4/10)/(1 + 3II)
-3(1 + 3II)/3IId + F(3/10)/(1 + 3II)
-(10211 + 61)/3IId
-2(3311 + 20)/31Id- F(6/lO)/(1 + 3II)
(4211+ 23)/3Iid
-(5711 + 28)/3Ild-- F(3/10)/(1 + 3II)
(1511+ 14)/3Iid + F(9/10)/(1 + 3II)
-(10211 + 61)/IId
-2(33II + 20)�lid
(4211+ 23)/IId

and lid = (1 + 311)(7 + 121I), F = 1 + 27III + 91I, where II =
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-1/2b_jbij and III = 1/3bivbpjbj_. In the third-order tensor polynomial the scalar functions are

D1 = -(312112 + 14911- 21)/5IId - F(1/5)/(1 + 3II)

02 = (48112 + II - 14)/51Id + F(3/lO)/(1 + 3II)

03 = -(324112 + 222II q- 17)/IId -- F(3/lO)/(1 + 3II)

D4 = -3/(7 -b 12II) q- F(9/lO)/(1 + 3II)

05 = -(10211+ 61)/IId

D6 = (4211 Jr 23)/IId

97 = --2(311 + 4)/5IId -- F(3/5)/(1 + 3II)

Ds = 27(2Ir + 1)/51I 
99 = (4211+ 23)/IId

D10 = (4211+ 23)/IId

Din = -8(39II+ 22)/5Iid

D14 = 2(24II + 17)/5Iid

Dis = -27/(1 + 3II).

Note that Dll : D12 : D16 : DI_ = Dis = 0 as well as A14 -- A15 = 0 have been set to zero

as they are not necessary to satisfy the mathematical constraints; there are some free parameters

left in this closure. Recourse to experimental data has not yet been made. What is now required

is a flow that has attained a structural equilibrium, ---Db-" = 0; the fixed points of the modeledDt _3

evolution equations for bij are then required to match the phenomenological data. This provides

six additional algebraic constraints to set the free parameters. This is the requirement that the

constitutive relation be asymptotically consistent with a known equilibrium state of a particular

turbulent flow. This procedure was introduced by Speziale, Sarkar and Gatski (1990). It is executed

for the present rapid-pressure strain closure for a homogeneous simple shear in Ristorcelli et aI.

(1995).

8. Additional commentary

In the Fourier space the rapid-pressure covariance can be written as an integral of the energy

spectrum over all the scales of the motion: from the production scales at _ _ 1 and larger to the

dissipation scales _ _ 1. The major contribution to the integral will be from large scales of the

motion, _ _ 1. In a high Reynolds number turbulence with a _-5/3 inertial subrange in which

there is enough of a separation of scales for a second-order simulation to be useful approximation,

say at least Rei _ 104, the ratio between the dissipative and the energy containing length scales

is _/l _ Re_ 3/4 _ 1000 and the flow scales range over 0 < _e < 1000. Approximately 85% of the

energy of the motion is contained in the first decade _g < 10: the major contribution to the rapid

pressure integral is from the scales of the motion greater than one tenth of the production scales.

If only the largest 1% of the flow scales, i.e. from 0 < _ < 10, begins to lose an eigenvalue of

the Reynolds stress tensor, the rapid-pressure will begin to approach the frame-indifferent limit.

The rapid-pressure covariance becomes asymptotically close to the frame-invariant limit with only
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a relatively small portion of the scales of the flow becoming horizontally divergence free.

Consideration is now given to additional limitations to the class of flows for which the constitutive

relation posited is not appropriate. The anisotropy of the Reynolds stress is not the sole measure

of the anisotropy of a turbulence field. Consider homogeneous rotating isotropic turbulence as

seen in the DNS of Mansour, Cambon and Speziale (1992). As assessed by Reynolds stresses it

remains isotropic yet the two-point statistics are highly auisotropic indicating a larger correlation

length scale along the axis of rotation. Reynolds (1989), Kassinos and Reynolds (1994), Reynolds

and Kassinos (1994) have realized the inadequacy of single-point closures to account for effects

of this form of anisotropy expected to be important in nonequilibrium situations. Within the

context of a single-point closure the resolution of this problem can only be accomplished by carrying

an additional quantity to represent this missing information, l_eynolds (1989) uses single point

quantity that he calls the structure dimensionality tensor that appears to be a useful proxy for

the information contained in two-point quantities. The possibility of the method to account for

two-point information using a single-point quantity is an interesting idea worth following.

The rapid-pressure strain covariance which is an integral over the two-point covariance is very

much affected by the two point anisotropy. The implicit assumption in single-point developments

with closures parameterized by Reynolds stresses is the implicit assumption of a single character-

istic length scale. This is a reasonable assumption for slowly evolving fields in which nonlinear

effects strongly couple the different directions. In geophysical flows in which body forces reduce

the nonlinear strain-vorticity interaction mechanism, Tennekes and Lumley (1972), the two-point

behavior is substantially different. The present version of single-point formalism can nonetheless

be applied to these flows; the physics that produces the auisotropy of the two-point statistics also

produces the anisotropy in the Reynolds stress. Rotating geophysical flows such as the planetary

boundary layers occur adjacent to solid boundaries and Taylor-Proudman requires u3 -+ 0. Thus

in either rapidly rotating or stably stratified flows the turbulence becomes a horizontal turbulence,

< U3U 3 >-"+ 0, for which a single-point parameterization using < u_uj > and < uiO > is possible.

This will also be the case for strongly vortical flows in which the vorticity of the fluctuating field is

aligned with the mean rotation.

In the DNS of homogeneous rotating isotropic turbulence a decrease in the nonlinear cascade rate

is noticed. This has been explained as an interference of the inertial wave field associated with

rotation with the phase coherence necessary for the cascade of energy to the smaller scales of the

motion. Here it has been shown that as the flow becomes horizontally divergence free the transfer

between the vertical and the other components of vorticity is reduced. This is an important
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componentof the cascadeprocessasTennekesand Lumley (1972) have shown. Whatever the

mechanism the reduction of the cascade mechanism will make the current parameterizations for

the dissipation equation invalid. There are some limits on the rotation rate that can be set in

order for the current parameterization of the cascade to be adequate. Consider the Rossby number

defined as a ratio of the vorticity of the production scales of the motion to the background vorticity

Rot = (q2/3)l/2/2gl_ = 3_/2_tq 2 using E = (q2/3)1/2/1. A spectral Rossby number can also be

defined as Rot(n) = u(n)/2a_(n) = (nE(n))l/2/2_(2_r/l';) which using the inertial range scaling

E(n) = a_2/3n -5/3 and s = (q2/3)1/2/_ becomes Rot(n) _ 0.2 (ni)2/3Rot. The effects of rotation

decrease as the wave number increases. For the inertial oscillations associated with the rotation not

to interfere with the cascade mechanism Rot(n) > 1 for nl _ 2 is required. Thus for Rot > 3 the

usual parameterization of the spectral cascade rate, s, in terms of the energy containing scales of the

motion is appropriate. For Rot < 3 the current dissipation equation begins to require modification.

How the dissipation equation is to rationally account for the effects of rotation on the cascade is

an unresolved issue. It is, however, clear that the assumption of the small scale equilibrium with

the large scales of the motion is valid in most high Reynolds number rotating flows of interest for
1/2_

Rot > 1: the l_ossby number of the dissipation scales of the motion is Roe = tee z mot and therefore

the dynamics of the small scale motions will be set by the large scales. At this point primarily

phenomenological theories have been advanced, Zhou (1995), Mahalov and Zhou (1996). There is

the rigorous analytical work of Babin, Mahalov and Nicolaenko (1996) on rotating turbulence that

may well produce theoretical results that might bear on this issue in a rational way.

9. Summary and Conclusions

Three experiments - the rotating tank, the rotating heated annulus and the stratified grid turbulence

- have been described. These cases cover three very basic classes of flows: rotating turbulence (in

a finite domain), baroclinic turbulence (rotation with horizontal temperature gradient) and stably

stratified turbulence. In the limit of small Rossby number or small Froude number these flows

exhibit equilibrium states that are horizontally nondivergent and therefore frame-indifferent. If the

second-moment equations are to be frame-invariant in the horizontally divergence free limit then

rapid pressure-strain covariance must satisfy the following constraint:

epqn_nXipqj = eqjn_ < uiuq > (54)

e_q_Xp¢ = eq_ < uq8 >. (55)

This equality, which assures the frame-invariance of the second-order equations, is called the

geostrophic constraint as it reflects the small Rossby number geostrophic balance of the momentum

equations, 2gikp_tp_p '_ --P,i. The geostrophic constraint must, however, be satisfied by any flow
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with avanishinghorizontaldivergencefor arbitrary Rossby number; this is a manifestation of the

fact that, in the absence of vortex stretching along the axis of rotation, that the evolution equations

are frame-invariant. This is not an application of the material-frame-indifference principle of ra-

tionai mechanics, Lumley (1970), it is a rigorous consequence of the Navier-Stokes equations. The

evolution equations are quite dependent on rotation as long as the flow is not horizontally divergence

free. The principle of frame-indifference in the two-dimensional limit, Speziale (1981,1985,1989),

is a special case of this invariance relevant to a purely mechanical turbulence. Here the flow may

have a vertical structure as might occur in stratified or baroclinic situations.

A horizontally nondivergent state has been shown to be a stationary flow achieved by turbulence

under the influence of rapid rotation or strong stratification. The invariant basis representation

methods have been used to construct a constitutive relation for the rapid-pressure strain covariance

that, in the limit of a horizontally divergent free field, produces the proper frame-invariance. The

representation constructed for the rapid-pressure strain covariance has variable coefficients. The

coefficients are functions of the state of the turbulence and are valid for all states of the turbulence

- they are not, as is typically the case, fixed to constant values obtained from empirical calibration,

Ristorcelli et al. (1995). The constitutive relation for the rapid-pressure-strain covariance has been

achieved for the class of horizontally nondivergent flows that are accompanied by the suppression

of the component of the energy of the turbulence along the axis of rotation or stratification. This is

a limited class of flows and represents the most that can be done with current single-point second-

order turbulence closures without carrying additional equations for additional quantities. This

limited class includes the horizontal turbulence case that occurs in most geophysical situations.

These flows occur in such situations as the planetary boundary layers in which the flow transitions

from a three-dimensional shear or convection driven mixed layer flow to an outer layer in geostrophic

equilibrium. It also includes the strongly vortical flows in which the vorticity of the turbulence is

aligned with that of the mean rotation.
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Figure 1. The oscillating grid in a rotating tank.
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